Powdery Mildew: Damage, Dissemination, and Best Management Practices

David Gent USDA Corvallis, Oregon

Overview

- Powdery mildew can be a very damaging and difficult disease to control in susceptible varieties
- Although most growers in the Great Lakes region do not have powdery mildew on their farm, the disease is present in the region
- Caution is needed on choice of varieties and sourcing planting material to avoid introducing the pathogen

Overview

1. Introduce diagnostics for powdery mildew

2. Present basics of disease biology and lifecycle

3. Important management considerations for growers that may have the problem

JF WWWW Dormancy Emergence Training Flowering Harvest Post-harvest

Lifecycle of P. macularis

Powdery Mildew Survival

W. Mahaffee

P. macularis Mating System

- Pairing with clonal isolates from Europe
- 15 PNW isolates in total
- Fungus is heterothallic
 - Requires 2 mating types present

Powdery mildew isolate	PNW	Tester 1 (Mat1)	Tester 2 (Mat2)
PNW	-	-	+
Tester 1 (Mat1)	-	-	+
Tester 2 (Mat2)	+	+	-

Wolfenbarger et al. (2015)

Presence of MAT in PNW

- Stratified Sampling Approach
- 3 collection time points
 - Early season (May)
 - Mid season (July)
 - Late season (September)

State	Total # of samples 2012	Total # of samples 2013	Mat1	Mat2
OR	68	60	128	0
WA	85	74	159	0
ID	30	0	30	0
Total	183	134	317	0

Wolfenbarger et al. (2015)

Presence of Mating Type in Sexual Populations

Location	Samples	Mat1	Mat2	
Maryland	14	14	14	Chi
New York	17	11	14	Square <i>P</i> = 0.508
Minnesota	4	1	3	1 - 0.900
Germany	4	0	4	
Germany*	5	3	2	
England*	2	1	1	Chi
France*	1	1	0	Square $P = 0.841$
Slovenia	5	4	2	Chi
Czech Republic	4	3	4	Square $P = 0.508$
Total	56	34	40	USD

- Flag shoots emerge over time in sync with plant growth
 - Starting at first emergence
 - Most emerge early in season
 - Some may emerge as late as end of May when yards are unpruned or pruned only by chemical desiccation

On susceptible varieties: ~0.5% of plants in WA; ~0.05% of plants in OR

Disease Management Basics

 Management requires multiple tactics that <u>delay</u> onset of disease and <u>reduce rate</u> of disease development

Time of Disease Onset and Epidemic Severity

Oregon 2014; 106 yards

Predicted Risk of Flag Shoot Occurrence

Probability of a flag shoot	Flag shoot last year	Disease occurrence last year	Poor pruning in spring
0.0008 (1/1250)			
0.017 (1/59)		Х	
0.007 (1/154)			Х
0.087 (1/11.5)	Х	Х	
0.12 (1/8.3)		X	X
0.43 (1/2.3)	Х	Х	X

Sources of Primary Inoculum

- Sexual, overwintering stage of the fungus on wild/feral plants or crop debris infested last year
- Powdery mildew is broadly distributed on wild/feral plants east of Rocky Mountains

Other Sources of Primary Inoculum

• Planting material

 Powdery mildew is easily spread on infected plants, foliage or crown buds of dormant plants

Sources of Powdery Mildew

- The likely origin of powdery mildew in a field can be deduced from:
 - 1. General patterns of disease
 - It is unusual to see very much powdery mildew in first-year plantings, unless the pathogen was introduced on the planting material
 - 2. The race/strain present
 - Some races/strains of the fungus are only known to occur in certain regions of the country/world
 - 3. Genetic fingerprinting

Sources of Powdery Mildew: 1. General patterns of disease

Sources of Powdery Mildew 2. The race/strain present

= both mating types present

= One mating type

Sources of Powdery Mildew 2. The race/strain present

- In the Pacific Northwest, three races of the powdery mildew fungus are prevalent:
- Pre-2012 strain:
 - infects plants with Rb,R3,R5
- R6-virulent (Nugget) strain:
 infects plants with Rb,R3,R4,R5,R6
- Cascade-adapted strain:
 - Infects Cascade and plants with Rb,R3,R5

Sources of Powdery Mildew 2. The race/strain present

 Outside of the PNW, R6-virulent strains are not known to occur on wild/feral plants

- Cascade-adapted strains appear occasionally in commercial production
 - e.g., confirmed in North Carolina, Colorado

Genetic Fingerprinting of Powdery Mildew

What is the likely origin of powdery mildew when....

- Severe mildew occurrence observed on a first planting
- Only Mat1 mating type found
- Race matches that of a Northwest isolate

Management Considerations

- 1. Source of planting material. Ensure diseasefree during propagation
- 2. Variety selection
 - Susceptible: Columbus, Cashmere, Galena
 - Intermediate: Centennial, Chinook
 - Resistant*: Nugget, Newport, Cascade
- 3. Canopy management
- 4. Fungicides
- 5. Harvest timing

Powdery Mildew Fungicides (in PNW)

FRAC Fungicide Efficacy Notes Group

11	Flint	Good	Downy mildew suppression
7/11	Pristine	Good	Downy mildew suppression
7/11 3/7	Luna Sensation Luna Experience	Excellent	Very effective during early cone development
7	Velum Prime	Excellent	For drip applications
13	Quintec	Excellent	Very effective early cone development
U8	Vivando	Good-Excellent	
3	DMIs Topguard, Rally, Procure and others	Good	Certain DMIs may have plant growth regulator effects when used during or after bloom
M2	Sulfur	Good	Timing and interval critical; effects on mites
NC	Bicarbonates	Moderate	Tank-mix partner
NC	Oils	Moderate	Good tank-mix partner when disease is present; phytotoxicity possible
U6	Torino	Excellent	Pending registration in 2018

Example Spray Programs on Nugget in Oregon

Late Disease Onset

Early Disease Onset

Date	Products
18 May	Oil
6 June	Sulfur
13 June	Oil
19 June	Oil
20 June	Aim (basal foliage)
4 July	Rally + Kaligreen + Oil
16 July	Quintec + Kaligreen
27 July	Luna Sensation + Kaligreen

Date	Products
1 May	Sulfur
15 May	Sulfur
23 May	Sulfur
26 May	Aim (basal foliage)
4 June	Sulfur
16 June	Aim (basal foliage)
17 June	Sulfur
18 June	Procure + Kaligreen
21 June	Oil
2 July	Procure + Oil
17 July	Flint
25 July	Pristine
4 August	Quintec

Critical Periods of Disease Management on Cones

Mid JulyLate JulyMid AugLate AugEarly-MidSept

Twomey et al. 2015

Critical Disease Control Period

Gent et al. (2014)

World Class. Face to Face.

Cone Color and Dry Matter

Cone color begins to deteriorate at about 25% dry matter

USDA

Gent et al. 2014

Cone Color Responses to Fungicides in Zeus

Gent et al. 2014

- 1. Thorough pruning in spring. Mechanically prune fields most at risk for flag shoots. Pruning timing considerations.
- 2. Timely, preventative first spray
- 3. Scout to detect disease early, adjust tank-mixes
- 4. Eliminate all powdery mildew before bloom: tank mixes with oils, sulfur, carbonates. Oil most effective and least expensive
- 5. Work copper into your downy mildew program.
- 6. Manage canopy to avoid excessive vegetative growth and increase light penetration (training date, N rate, etc.)
- 7. Reduce N rates as much as possible (ie, less than 200 lbs) and avoid N after bloom
- 8. Remove basal foliage at least twice when mildew is present
- 9. Reduce humidity where possible (stripping, irrigation management, cover crops, etc.)
- 10. Do not deviate from 10-day spray interval during critical periods of cone development (~July 20 to Aug 10)
- 11. Use most effective fungicides during early cone development. Presently Luna Sensation and Quintec
- 12. Spray near Aug 20 might be beneficial in certain years with high disease pressure
- 13. Tank mix synthetic fungicides with oil, sulfur, or bicarbonate depending on time of year and product
- 14. Ensure good coverage with all sprays
- 15. Monitor dry matter carefully. Harvest before dry matter ~25.5% in high alpha varieties

David Gent US Department of Agriculture Corvallis, Oregon Dave.Gent@ars.usda.gov

Nelson et al. (2015)

Carbohydrate Management

- Carbohydrate
 accumulation inversely
 related to rate of shoot
 development
- July, August and September are important periods for establishing carbohydrate reserves in root system, especially in young plantings

Basal Foliage Removal

• Can be important for disease management

 Need to consider plant age and vigor when deciding how aggressively to defoliate

Basal Foliage Removal and Harvest Impacts on Carbohydrate Reserves

Basal Foliage Removal and Harvest Impacts on Carbohydrate Reserves

Treatment	Yield reduction in next season
Control	0%
Harvested	15%
Basal foliage removed	43%
Basal foliage removed + harvested	51%

Williams, 1962

Examples of Pruning Quality

April

May

June

July

Timing of Bud Infection

- Overwintering crown buds
- Susceptible bud tissue
- Inoculum availability
- Environmental conditions favorable for infection

